Self-Organizing Neural Networks as a Means of Cluster Analysis in Clinical Chemistry
نویسندگان
چکیده
منابع مشابه
Self-organizing neural networks as a means of cluster analysis in clinical chemistry.
Connectionist systems (often termed "neural networks") are an alternative way to solve data processing tasks. They differ radically from conventional "von-Neumann" computing devices. Recent work on neural networks in clinical chemistry was done using supervised learning schemes, resulting in models which resemble classical discriminant analysis. The aim of the present study is to make clinical ...
متن کاملCluster Analysis Via Dynamic Self-organizing Neural Networks
The paper presents dynamic self-organizing neural networks with one-dimensional neighbourhood that can be efficiently applied to complex, multidimensional cluster-analysis problems. The proposed networks in the course of learning are able to disconnect their neuron chains into sub-chains, to reconnect some of the sub-chains again, and to dynamically adjust the overall number of neurons in the s...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Self-organizing Neural Tree Networks
Automatic pattern classification is a very important field of artificial intelligence. For these kind of tasks different techniques have been used. In this work a combination of decision trees and self-organizing neural networks is presented as an alternative to attack the problem. For the construction of these trees growth processes are applied. In these processes, the evaluation of classifi...
متن کاملA Self-Organizing Fuzzy Neural Networks
This paper proposes a novel clustering algorithm for the structure learning of fuzzy neural networks. Our clustering algorithm uses the reward and penalty mechanism for the adaptation of the fuzzy neural networks prototypes at every training sample. Compared with the classical clustering algorithms, the new algorithm can on-line partition the input data, pointwise update the clusters, and self-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Clinical Chemistry and Laboratory Medicine
سال: 1993
ISSN: 1434-6621,1437-4331
DOI: 10.1515/cclm.1993.31.5.311